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Abstract

Deep Neural Networks are quickly becoming the industry standard for many complex machine

learning tasks. Their inner workings however are considered by many as a ‘black-box’, this makes

practical implementation and academic research into these algorithms particularly challenging.

This project explores visualisation as a method to shed light upon how these networks behave.

This reports begins by explaining some fundamental concepts surrounding neural networks,

it then explains the importance of visualisation, some key visualisation principles and how

visualisation has been used in the past to learn more about neural networks. With a solid

theoretical foundation, the report then considers the opinion of researchers before defining a set

of requirements which are progressively implemented throughout.

Two well understood neural networks are created before being strategically broken to develop

a dataset for testing the visualisation tool. The multi-dimensional data collected is processed us-

ing the dimensionality reduction algorithm tSNE to preserve ‘topological’ characteristics which

were subsequently visualised. The first product iteration explores animation. The second de-

velops an interactive online application. The third builds upon lessons from the second by

developing a faster, easier to use and more appropriate tool with greater data interrogation fea-

tures. Finally all are tied together in a product that in addition uses PCA and varimax rotation

to further manipulate the visualisation data for easier comparative analysis. The report ends

by demonstrating some practical use case scenarios using the tool that required a knowledge of

neural networks, visualisation, data analysis and web-development to complete.

Through the application of quantitative data visualisation theory to the data collected from

within training neural networks, this project develops a tool that reveals immediately observ-

able patterns that can help academic researchers make more effective adjustments of critically

important neural network parameters - this is the first contribution of this project.

Where visualisation is most often used as a tool for creating presentation material, this

project demonstrates the usefulness of visualisation as a tool for serious analysis. In achieving

this, the second contribution of this project is to the community as a whole in strengthening the

argument for more sophisticated visualisation tools to be developed for use in serious science.
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1 Introduction

1.1 Motivations

Deep Neural Networks, DNNs, are machine learning algorithms that enable incredibly accurate

feature learning and hierarchical feature extraction. These algorithms were first successfully

used decades ago, however made a strong comeback within the machine learning community in

2012 when, in the ImageNET competition the clear winner by an unusual margin was a DNN.

Since 2012 they have seen a dramatic increase in popularity in application areas as far ranging as

medicine, finance and sports prediction, however are most famously used for addressing complex

challenges such as computer vision and speech recognition.

However unlike some other machine learning models that are widely understood, such as

logistic regression or support vector machines, neural networks are notoriously difficult to train

(Nielsen 2015). This is a problem for novice users and experts alike, and a current trend in

academic research is to explore not only what these networks can do, but how they do it.

While there have been many studies mathematically analysing these networks, often aiming

to optimise elements at the heart of deep neural networks, such as optimising the ‘gradient

descent’ algorithm, there has been comparatively little work that aims to solve some of the

everyday issues machine learning researchers come up against. These problems include not

always fully understanding what networks are doing, what they are learning, or why. This

culminates in making the difficult task of optimising the parameter selection space exceedingly

challenging.

The motivation for this thesis is to provide a means of improving this situation such that

researchers have a way of better understanding their models.

1.2 Objectives

The main objective of this thesis is to develop a tool capable of visualising the internal changes

that occur within a neural network while it trains. Should such a tool prove to be useful it will

demonstrate that more sophisticated visualisation techniques are not just useful for explaining

neural network research, but can be used to better understand academic research while it is

being undertaken.

There are a number of challenges in developing such a tool:

• Data Generation The first objective is to build a neural network that can be easily

changed and parameters adjusted in a controlled manner. This should produce the data

that will eventually be visualised.

• Simple work flow integration One of the key challenges identified in early research was

to produce a tool that fits into a researchers existing work flow. The first iteration of the

tool must aim to be both simple to use and provide useful feedback about the network.

• A visualisation tool Currently it’s very difficult to spot patterns amongst the vast array

of numbers output by a neural network using traditional methods. The most important
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objective of this project is to develop a tool that enables researchers to spot patterns

emerging within their data that may help influence future model adjustments.

1.3 Contribution

This project has two contributions. First, a new visualisation tool for researchers that reveals

immediately observable patterns that can guide academic researchers towards making more

effective adjustments to their network models. Second, through the achievement of the first this

project strengthens the argument that it is necessary to develop more sophisticated visualisation

techniques for the purposes of understanding research, rather than the common purpose of

displaying research.

1.4 Report Outline

• Chapter 2: Identifying the Problem

Provides an introduction to the fundamentals of neural networks and their parameter

design space. It also explores the problem that this resurrected field is relatively poorly

understood: the black-box problem.

• Chapter 3: Searching for a Solutions

Introduces the concept of Intelligence Augmentation and with it some important concepts

from the field of data visualisation. It also explores previous work performed in the area

of Visualising Neural Networks.

• Chapter 4: Product Goals

This chapter explains the introductory survey which led to a number of goals being defined

for the visualisation product. It then goes into further detail about goals defined as a result.

• Chapter 5: Data Collection

Introduces MNIST, the dataset used within this project, as well as the two Neural Networks

used throughout the project. Finally this section explores data collection methods used

to interact with the networks.

• Chapter 6: Dimensionality Reduction

In the previous section it is explained that the data collected from Neural Networks is

Multi-Dimensional. This section explores two methods for dealing with problems that

arise because of this: visualising high-dimensional data and dimensionality reduction. It

also explains the choice of using tSNE as the primary reduction method for this project.

• Chapter 7: Iteration 1 - Animation

This section explores the use of animation as a tool for highlighting differences in tSNE

visualised data. It concludes by calling for increased interaction with the data, responding

to critique of the passively observed animations.

6
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• Chapter 8: Iteration 2 - Online & Interactive

Here online methods for interacting with, and visualising, network data are explored.

The MEAN web development stack, a JavaScript implementation of tSNE, and D3.js are

introduced as key implementation details. It also unveils requirements about speed, input

detail representations and user-interface design.

• Chapter 9: Iteration 3 - Epochs & Layers

Responding to observations from iteration two, here the user-interface is redesigned con-

trolled by epoch and by layer. It also explains a shift from a JavaScript backend to create

a distinct Python / JavaScript divide communicating through a RESTful API. This coin-

cides with the removal of tSNE.js in favour of a faster Cython implementation of Barnes

Hut SNE.

• Chapter 10: Iteration 4 - metaSNE & Principle Component Analysis

Introducing the final product which builds upon all three previous iterations to demon-

strate a fully-functional and useful tool. Iteration 4 has the addition a of post-processing

element that uses Principle Component Analysis and Varimax Rotation to increase the

functionality of the tool by mapping similarities between network outputs. A summary of

the product is also given.

• Chapter 11: Conclusions

This chapter concludes the report by exploring several observations made using the tool

that are representative of how an academic researcher may interact with it. It also proposes

some opportunities for future work, and finally makes some summary comments about the

project as a whole.

7
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2 Identifying the Problem

2.1 Understanding Neural Networks

2.1.1 Overview

Neural Networks are loosely modelled on the human brain; a highly advanced information pro-

cessing machine composed of around ten billion neurons and their connections. Artificial Neural

Networks (ANNs) are a class of machine learning algorithms that seek to adopt some of the

components of this advanced machinery, using a combination of computational and statistical

methods to automate information extraction from data and allow computers to learn in a way

that mimics early stage human learning.

An ANN, in the case of supervised learning, is a collection of artificial neurons that are

joined together in manor which allows them to successfully learn to process information to

meet some previously defined end goal. The result of learning is that an ANN becomes a high-

dimensional, non-linear, function that while often taking vast amounts of time to train, is capable

of performing a trained task within mere fractions of a second when called upon. Provided with

enough hidden units - neurons - it can approximate almost any function.

ANNs have been around for a long time, and had some early successes; such as when in

1989 Convolutional Networks (LeCun et al. 1989), or ConvNets, first demonstrated remarkable

performance in tasks such as handwritten digit classification and face recognition. It wasn’t

until years later, in 2012, that they were finally put back on the machine learning map. The

important leap forward came with the record breaking performance on the ImageNet classifica-

tion benchmark, where the Krizhevsky ConvNet achieved an error rate of almost half that of

the next best rival - 16.4% in comparison to 26.1% (Krizhevsky et al. 2012).

Several factors made the 2012 result possible where previously neural networks had been

unsuccessful; the availability of vast training sets with millions of labelled examples, powerful

GPU implementations speeding up training by great magnitudes thus enabling deeper models,

and better model regularization strategies such as Hinton’s drop-out (Hinton et al. 2012).

Since the Krizhevsky success rapid advances in deep, or multi-layered, networks have pro-

duced significant outcomes in application areas such as vision (Russakovsky et al. 2015), speech

(Sutskever et al. 2014), speech recognition (Sainath et al. 2015), NLP (Norouzi et al. 2014) and

translation (Graves & Jaitly 2014). These developments brought deep learning into the heart

of the current machine learning community, which for decades had dismissed them in favour of

simpler models.

2.1.2 Network Structure

(a) Feed Forward (b) Convolutional

Figure 1: Two of the most common architectures used for DNNs

8



Visualising Neural Networks, by Sam Green 4th September, 2015

ANNs consist of a series of layers. These layers are composed of artificial ‘neurons’ that compute

a function on the inputs provided by the previous layer. They then pass the results (activa-

tions, that are typically real-valued numbers in the range [0,1]) as outputs to deeper layers.

Within any individual layer there exists only one type of neuron computing the same function:

these neurons are differentiated by potentially distinct inputs, outputs and weight distributions.

Layers themselves are defined by the number and pattern of connections between these neurons.

In order for a network to perform its task, a neural network must first be trained. This

involves modifying the weights and biases of the network such that it produces the correct

response for each of a number of training examples. The activations of the input units are set

according to the feature values of the example, then these are propagated through the network

to the output units, where the result is compared to the target output for that example and

an error value calculated. This error signal is then back propagated through the network until

the weights of the network have reduced the error at each connecting node. The changes that

occur are typically very small, and so large training sets are required to successfully converge

the network on an optimal weight distribution.

The intuition behind back propagation, the algorithm that adjusts the weights with respect

to the error value, is one of assigning ‘blame’. The activations of the output nodes are determined

by the activations of all the nodes below it, therefore error at the output is a result of the weights

acting directly upon it from the preceding layer, and those recursively before it. In order to

adjust the weights lower-down the error is backwardly propagated to the lowest hidden nodes

that contributed an poor activation.

This process amounts to inductively learning how to solve a problem by exploiting regularities

across a training set so that future similar examples may be classified in the same way. This is

very similar to the way a human child learns.

2.1.3 Layers

Figure 2: Convolutional Filters

There are a number of different types of layers that can be combined in a neural network: in a

fully connected layer the neurons receive an input value from every neuron in the previous layer.

In a locally connected layer the neurons are indexed spatially with inputs coming only from those

nearby, and in a convolutional layer a number of filters are applied to create a convolution.
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The convolution of an image is produced by applying a filter upon the input image. The filter

is a k × k weight matrix such that k is an odd number to ensure the matrix has a true centre.

The convolved image is produced pixel at a time by computing the dot product of the filter and

the pixels below it, the central pixel of which is updated. A convolution is therefore produced

by scanning the filter across the input pixel space until every pixel is replaced by a pixel that is

some function of its filter bound neighbours. Deep successions of convolutions encode images in

ways that make them invariable to translation and deformation. This is critical for classification

(Bruna & Polytechnique 2012).

2.1.4 Neurons

(a) Multipolar Biological Neuron (b) Artificial Neuron Model

Figure 3

As mentioned previously, artificial neural networks are loosely modelled on the human brain,

and take influence from the multipolar biological neuron. The neuron receives multiple electric

charges from its neighbours through the dendrites. This then triggers a single electric charge to

a different set of neighbouring neurons through its axon terminals. Artificial neurons perform

effectively the same task and compute functions that take in multi-dimensional input but output

a mono-dimensional result.

There are a number of different neurons used within the layers of an artificial neural network:

Binary Threshold Neuron

y =

1 if M ≤
k∑

i=1
xi · wi + b where M is a threshold parameter

0 otherwise.

Here, y is the output of the neuron calculated by the weighted input acting upon it, and

assessing this value against some threshold M. The threshold neuron works much like a biological

neuron in that it either outputs a charge or it doesn’t. This neuron however is rarely used due

to the fact that it breaks optimisation algorithms, such as gradient descent, which require a

function to be differentiable.

Logistic Sigmoid Neuron

y =
1

1 + exp(−z)
, where z =

k∑
i=1

xi · wi + b

10
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A commonly used transfer function is the sigmoid, which is a differentiable approximation of

the threshold function above. Here the bias b performs a similar function to the threshold M in

the previous example. The ‘threshold’ can be through of as the point at which the gradient of

the decision surface is steepest. While in the threshold neuron this represents a hard boundary,

the sigmoid represents a gradient of values. One disadvantage of the sigmoid is that is is more

expensive to compute.

(a) Sigmoid A (b) Threshold (c) Sigmoid B

Figure 4

Rectified Linear Neuron (ReLU)

y = max{0, b +
k∑

i=1

xi · wi}

The rectified linear neuron is a hybrid function. It is more efficient to compute than the

sigmoid neuron and is partially differentiable, thus making it suitable for gradient descent. The

compromise here is the cost of sophistication of the result.

2.1.5 Design Space

In a typical machine learning work flow, including working with ANNs, practitioners iteratively

develop algorithms by refining choices in areas such as feature selection, sub-algorithm selection,

parameter tuning and more (Patel et al. 2008). This is usually done through a trial and error

approach that is perhaps similar to hill-climbing in the model space and can likewise lead to

locally minimal results.

Figure 5: Hill Climbing in the parameter space (Gradient Descent)

Some examples of parameters that require tuning are:

Size of Filters: if the filter is too small features will be too coarse, however if the filter is

too large the complexity of a model increases significantly with little benefit.

Number of Layers: additional layers tend to improve performance, however they also

increase a models complexity and thus its training time - this means that fewer model iterations

11
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are possible within a set time period. Back propagation issues with layers failing to train can

also arise.

Filters per Layer: additional filters likewise tend to improve performance, and again there

is likely to be a cut-off point where diminishing returns are outweighed by increased model

complexity and training time.

Layer Connectivity: variations in locally-connected and fully-connected layers can change

performance dramatically, such as exhibited in the difference between convolutional layers, fully

connected layers and those with dropout.

Input and Output Data Encodings: different vector encodings change the way the net-

work learns. Images for example with a height, width and three colours per pixel are compressed

into a one-dimensional vector used as input.

Error Space, or Bound: changes how the network perceives error, and thus fundamentally

effects what it learns during the back-propagation optimisation period.

Initialization of Weights: can also alter how a model learns. There are a number of

different possible approaches to this: such as uniformly, randomly, as a Gaussian, unsupervised

pre-training and more. Initialisation can significantly effect error propagation: too low and error

won’t propagate and the network won’t learn.

Auxiliary Layers: in ConvNets for example, pooling and normalization layers are often

applied, however each has it’s own set of additional parameters to tweak and a different effect

on the model, thus requires complex tuning or remaining with common choice values.

Non-linear functions: can make a large difference on model performance: the choice of

which non-linearity you choose, for example choosing a ‘Rectified Linear’ neuron as opposed to

a ‘sigmoid’ as explained previously.

Optimization Parameters: such as step-size, or learning rate, regularisation, mini-batch

sampling all need to be tuned for maximum accuracy and convergence speed. While there are

common algorithms that help choose these parameters, such as AgaGrad (Duchi et al. 2011),

manual tuning is often still required, and can be difficult to get right.

Momentum Co-efficient: adds a fraction of the previous weight update to the current

one, and is used to help prevent the system from converging to a local minimum or saddle point,

and increase the speed at which it converges. Too high and risk of overshooting the minimum,

and too low the system might still hit a local minima.

2.2 Black Box Problem

2.2.1 Overview

While there have been some improvements to neural networks over the years, such as the de-

velopment of drop-out, they remain to be considered by many as a black box algorithm (Bernd

et al. 1999), especially in comparison to some other better studied and less complex machine

learning techniques such as support vector machines or logistic regression. Indeed many popular

machine learning competitions are still won by those better understood algorithms despite their

comparative simplicity (Adams et al. 2015).

There is no clear understanding of why deep neural networks perform so well or why certain

combinations of internal weights and connections enable highly complex tasks, such as computer

12
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vision, to be performed. Often as a result the development of new models falls largely upon

a ‘greedy’ trail and error approach to tuning the network parameters. This is unsatisfactorily

unscientific, using experience and intuition as the primary guiding factors - making insights hard

to replicate or teach.

Figure 6: Black Box problem

2.2.2 Existing Solutions

It is hoped that alternative work flows may provide deeper insight. (Jarrett et al. 2009) for

example uses a table of pre-evaluated models compared against a number of datasets in order

to make more informed decisions. (Bergstra et al. 2013) uses a less human involved approach by

using Bayesian statistics to automate the search of the parameter space, this computationally

demanding task neither always provides an optimal solution nor is it always possible.
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3 Searching for a Solution

3.1 Human & Computer Augmentation

3.1.1 Solving Hard, Complex Problems in the Real World

When former world champion chess grandmaster Garry Kasparov was beaten by IBMs deep

blue in February 1996, the headline was that Artificial Intelligence had finally surpassed human

intellect. However following that loss Kasparov founded a competition known as freestyle, or

advanced, chess - here human chess players use software to augment their play. The results were

significant: humans who teamed up with machines could beat the autonomous machines. In

short, intelligence augmentation of humans with computers is still superior to computer artificial

intelligence.

IA > AI

Companies such as PayPal and Palantir also practice a form of IA using machines to process

data and humans to analyse it - often through visualisations - to perform complex fraud detection

tasks that would be impossible for either to solve alone.

This project, by using the computer as a lever to analyse large datasets of neural network

output through visualisation makes the hypothesis that the human-computer hybrid approach

to understanding deep neural networks will be more successful than those purely computational

methods described earlier.

This is not a novel idea, and similar projects have been undertaken across a variety of areas

within machine learning, in the visualisations of the naive-Bayesian network (Becker et al. 2001),

decision trees (Ankerst et al. 1999), Support Vector Machines (Caragea et al. 2001) and Hidden

Markov Models (Dai & Cheng 2008). Studies have shown that integrating visualisation tools

into the learning work flow can in fact produce better results than automated techniques alone

(Ware et al. 2002).

Figure 7: Palantir Visualisation tool: Humans augmented by computers

“The use of computer-supported, interactive, visual representations of abstract data can am-

plify cognition” (Card et al. 1999).
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3.1.2 Active Vision & Problem Solving

Using visualisation to augment intelligence is part of a small revolution in our understanding

of human perception, sometimes called ‘active vision’ (Ware 2010). Active vision means that

graphic designs and visualisations are more than pretty images, but should be seen as cognitive

tools that enhance and extend our brains. Diagrams, maps, web pages, information graphics,

visual instructions, and more regularly help us to solve problems through a process of visual

thinking, using the enormous proportion - almost half - of the human brain that is devoted to

the visual sense.

Figure 8: Tor Nrretranders Brain Bandwidth

Danish Physicist Tor Nrretranders discusses the ‘bandwidth of our senses’ to indicate indi-

cate the power of our visual systems. In the diagram the small white box at the corner is 0.7%

of total power and is what human beings are aware off when all this processing is happening

(Tufte & Sigma 2012).

“We are all cognitive cyborgs in this Internet age in the sense that we rely heavily on cognitive

tools to amplify our mental abilities. Visual thinking tools are especially important because they

harness the visual pattern finding part of the brain.” (Ware 2010).

3.2 Visualisation Theory

3.2.1 Overview

Visualising quantitative information typically involves displaying measured quantities - data -

by means of the combined use of points, lines, coordinate systems, numbers, symbols, words,

shading, and/or colour. These visual forms are easily understood and an enable in depth critique

of the information underlying them (DeFanti et al. 1989), (McCormick et al. 1987), (Tufte 2001).

In numerical formats vast quantities of data can be tedious to process, and often little

can be gained from such complex models. Visual data on the other hand communicates to

the highly developed visual pattern-recognition capabilities of humans as already described.

There are a number of details worth considering: images are pre-attentive and are processed

before text in the human brain. Several empirical studies show that visual representations are

superior to verbal or sequential representations across a number of different tasks; illustrating

relationships, identifying patterns, presenting overviews and details, supporting problem solving

and communicating different knowledge types, and more (Burkhard 2004). It should not be

surprising that as a species humans are far better at recognising regularities, anomalies, and

trends in images rather than in long lists of numbers (Ware 2010). Consider how difficult is may
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be to observe both global and local patterns in a list of numbers, in comparison to the relative

ease when presented in a standard visualisation model such as a graph.

For data analysis to be truly effective, it is important to include the human in the data

exploration process and combine the flexibility, creativity and general knowledge of the human

with the enormous storage capacity and computation power of computers.

Figure 9: Ware’s “Things that pop-out”

The canonical example of the usefulness of visualisation lies in the Anscombes quartet, where

the four sets of numbers have many identical summary statistics - mean of x values, mean of y

values, variances, correlations and regression lines - but vary wildly when graphed (Shoresh &

Wong 2011):

Figure 10: (a) The four sets of numbers that form Anscombe’s quartet - (b) The highly distinctive
graphs that result from plotting the data in a.
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3.2.2 Tufte’s Rules

All of this theory makes a clear argument to use visualisation alongside statistical analysis

methods to analyse collected data, but in order to do this a set of practical guidelines must

be explored. Edward Tufte, the founding father of data visualisation, provides us with a set of

basic commandments (Tufte 2001):

(a) Poor Line Weights: unclear (b) Better Line Weights: clear

Figure 11: Tufte’s train line chart demonstrating excessive data-ink

• Principle One: show only as much information as is required

This is Tufte’s data-ink principle - irrelevant content is distracting, so should be removed.

It is common place today to find charts and graphs with all sorts of three dimensional

effects, unwanted background images and colours. The idea of having a data-ink ratio is

to show only as much information as is required.

Data-ink ratio =
data-ink

total ink used to print the graphic

• Principle two: include visual differences only when required

The human brain has an amazing ability to spot visual differences such as color, size and

position. Often our eyes look for the meaning to change depending on how these visual

features are designed. If there is no difference, but embellishments are added, it often

leads to confusion. He argues here for simplicity and clarity above all else.

• Principle tree: use visual encodings for quantitative values

This is the key visual principle, successful examples of which are: length, for example

the length of bar in a bar graph; 2-D location, for example the position of a data point

in a scatter plot; size, for example the area in a pie chart; shape, orientation or hue,

for example denoting different classes in any graph. All of these are automatically and

immediate understood as they have natural properties that humans understand, far clearer

than any numerical value.

• Principle four: differences in visual properties should correspond to actual differences in

the data

Its important to encode differences consistently and not manipulate the visualisation to

aid an argument. For example, ensuring that axes are consistent - from zero to some useful

value without undergoing any form of distortion.
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• Principle five: do not visually connect values that are discrete

In a graph, when you draw lines between discrete values and connect them, people per-

ceive those values as having a relationship to each other. This should be avoided if no

relationship exists.

• Principle six: visually highlight the most important part of your message

All information on a chart may not be equal so they should direct a users attention to a

particular part of the visualization by visually highlighting the data through the use of

color, position or another standard encoding.

• Principle seven: augment short term memory through visual patterns

The human brain is limited to retaining around four pieces of information at any given

time. By presenting large pieces quantitative information as visual patterns, such as in

plots, more information can be understood at any given point.

• Principle eight: Encourage the eye to compare different pieces of data

Information is not something that exists in isolation, and often by comparing pieces of

information one is brought to new conclusions about that data.

• Principle nine: Reveal the data at several levels of detail

Quantitative data often has several scales, with patterns appearing at both a global and

local level. By enabling the data to be viewed at different levels of detail the data can be

explored in its full complexity.

• Principle ten: Don’t distort the data:

Often it is tempting to change the scale on a graph for it to ‘fit’ appropriately, or to

crop the data hiding anomalies. With these elements of distortion the full picture is not

revealed, and the purpose of visualisation compromised.

3.3 Existing Neural Network Visualisations

Some of the principles described above have been adopted in neural net visualisations already,

others have been ignored. This section explores some of these previous attempts at visualising

networks which have been around helping researchers with neural networks for a long time, such

as the Hinton diagram which was first demonstrated as early as 1986. This section provides a

brief overview of similar techniques from around the nineties, where a number of the techniques

are going to be visualisations of the simple neural network below.
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Figure 12: Simple Neural Network

3.3.1 Hinton Diagram

Figure 13: Hinton Diagram

One of the first practical visualisations of ANNs was the Hinton Diagram (Hinton 1986). It

visualises the weights and biases relating to a node within a network. Weights are represented

as boxes, where its area represents the weights magnitude, and it’s shade represents the sign

on the weight - white is positive, black is negative. Biases are illustrated as weights from a

node back to itself. There is a vague representation of the architecture as output nodes appear

at the top of a diagram, hidden nodes are in the middle, and input nodes are at the bottom.

However these diagrams are rather unclear, and lack of topological information is a problem.

The advantage is they make it easy to compare the signs and magnitudes of the weights that

contribute to a neurons activation.

3.3.2 Bond Diagram

Figure 14: Bond Diagram
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Similar to the Hinton Diagrams, the Bond diagram (Wejchert & Tesauro 1990) graphically

depicts the values of the networks weights and biases. The bond diagram however attempts to

make the architecture of the network more clear; a neuron is depicted as a circle, where the

diameter of the circle indicates the magnitude of the bias, and triangles connecting the circles

represent the weights. The magnitude is indicated by the height of the triangle, and colour

depicts the sign.

While it is perhaps easier to decipher the network structure from the Bond diagram, it is

harder to gauge the relative importance of the weights and biases which have been depicted with

different shapes. It makes the following question very difficult to answer: “which input units

need to be active in order for the net input to exceed the threshold (bias) of the hidden units?”

(Craven & Shavlik 1992), a useful question that Hinton diagrams are far better at answering.

3.3.3 Hyperplane Diagrams

Figure 15: Hyperplane Diagram

A hyperplane depicts the ‘threshold’ of a decision surface. As this hyperplane moves throughout

the training process, visualising the hyperplane as it moves can be a useful method to get an

understanding of what a neuron is learning (Munro 1992). Neurons that appear in the same

layer can have their hyperplanes shown in the same diagram due to a sharing of input space,

making comparison easy.

One issue with this hyperplane representation is that while accurately representing a thresh-

old function acting on a two-dimensional input space, the diagrams fall down when compared

with most contemporary ANNs that require multiple dimensions (> 3) to be shown and more

commonly use continuous transfer functions such as the sigmoid - which requires a gradual,

rather than a sudden, division of the input space. That said, it can be assumed that the

hyperplane is a close approximation of the gradual boundary and so can still provide useful

observations.
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3.3.4 Response-function plots

Figure 16: Response Function Plot

Response-function plots are very similar to hyperplane diagrams - they also display the decision

surface. They differ in their solving of the issue of the gradual boundary. Instead of displaying

the space using a hyperplane, the space is displayed as a gradient of values to indicate the

resulting activations.

Interestingly, both the Response-Function Plots and the hyperplane diagrams show the space

between two successive layers of neurons. This provides only a fraction of information about the

network, and problematically may lead to false assumptions about it. One way to address this

is to describe the decision surface not just on the layer below, but across all previous layers of

the input space.

3.3.5 Trajectory Diagrams

Figure 17: Trajectory Diagram

Trajectory Diagrams (Wejchert & Tesauro 1990) depict the change in weight space and in error

over a neuron during training. These diagrams use the incoming weights of a neuron to create

the axes of a plot. During training as the weights change they are visualised as a trajectory in

the weight space. The error at a given time is indicated by the thickness of the trajectory line.

Again, along with many of these other early visualisation methods, the weakness of the

trajectory diagram is its inability to display weight spaces of more than three dimensions. There

have been efforts to combine dimensionality visualisation with trajectory diagrams - such as using

radially projected axes, however this is fairly unsuccessful (Craven & Shavlik 1992).
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3.3.6 Lascaux

Figure 18: Lascaux Clip

Lascaux is a visualisation tool proposed by (Craven & Shavlik 1992) that aimed to clearly display

the topology of a network. Here, each neuron is represented as a box and network weights are

represented by interconnecting lines. A weights magnitude is visualised by the thickness of a

line, and the positive or negative signs are visualised as solid and dashed lines respectively.

The tool depicts a range of information it one place. Activation of each neuron is show

as a vertical bar within the neuron ‘box’; a horizontal bar shows the net input relative to a

threshold - shown as a line intersecting the bar; error is another vertical bar within the neuron

box; a separate diagram shows the error propagating as connections between these boxes - where

thickness describes magnitude.

The issue with Lascaux is that too much information is being displayed in a small space

ineffectively. The approach uses standard two dimensional visualisation techniques, and simply

squashes them into a neural network architecture. This makes the topology easier to understand,

but at the sacrifice of more important elements.

3.3.7 Tseng Map

When representing weights, it is important to consider the analytical impact of a visual decision.

(Streeter et al. 2001) visualises the topology of the network but doesn’t clearly show the weights

themselves. This can lead to confusion when assessing the importance of a neuron. Consider for

example a neuron that has appears to have a high value in one layer, however is subsequently

cancelled out by low weights deeper within the network.

One problem here is that since the absolute values of the weights are used, the result does

not provide the direction of the relationship.
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Figure 19: Tzeng Map

(Tzeng & Ma 2005) based on the work of (Garson 1991) and (a.T.C. Goh 1995) sought to

solve this problem in a different way; by visualising the weights with line-thickness between

nodes, thus making it easy to identify when a node is insignificant regardless of the magnitude

of weights applied to it. In addition (Tzeng & Ma 2005) propagate all of the layers influence

through the network by multiplying each weight between the previous layers with those of the

successive layers which connect to the same node.

3.3.8 Features

A more recent attempt at visualising neural nets is the feature mapping of convolutional neural

networks. It is mostly limited to the simple visualisation of the 1st layer where projections to

the pixel space are relatively easy to achieve. However there are exceptions, and a small number

of researchers have developed methods for visualising deeper hidden layers.

Figure 20: Zeiler DeConvNet

(Erhan et al. 2009) sought to find the optimal stimulation of a unit activations through

gradient descent in the image space. This has been criticised as difficult to obtain due to the

need for careful initialization, and the lack of information conveyed about a units invariance.

(Le et al. 2010) show how the Hessian of a given node may be computed numerically around

an optimal response - thus fixing the formers shortcomings by providing a view of invariances.

The issue with this approach is with the higher layers where invariances become increasingly

23



Visualising Neural Networks, by Sam Green 4th September, 2015

complex and are thus poorly encoded in their quadratic approximations.

(Vondrick et al. 2013) use feature inversion algorithms, where an image is featurized

and then recovered to a transformed but decipherable format - again to give intuitive access to

abstract feature representations formed by the network. Using this technique they discovered

single deep neurons that were trained to respond to faces and bodies, both human and animal.

(Zeiler & Fergus 2013) provide a technique called Deconvolution (Zeiler et al. 2011) which

effectively reverses a convolutional network. Deconvolution is a type of feature inversion that

renders re-weighted versions of inputs, highlighting areas, patterns and textures of an image

deemed most important by a particular part of the network. It essentially approximates a

reconstruction of the input of each layer from its output.

Clearly with such a lot of attention placed on visualising featurisations, it’s a significant

opportunity to learn about the networks. It’s important to realise however that one of the above

is not necessarily better than the others: each show a different element of the featurisation, and

as experts still know relatively little about the behaviour of ANNs it’s important to not discard

any of these visual aids rashly.

3.4 Evaluation

While there have been many attempts to visualise the internal processes occurring within neural

networks, it is clear that no definitive technique has been discovered. Each technique provides

a new tool for the probing toolkit.

There is however a trend moving away from visualising weights and bias acting on particular

neurons towards discovering representation at either a model or layer level. This thesis will

attempt to follow that lead.

It is important to understand the background of neural network visualisations to set the

context within which this latest attempt should be judged.
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4 Product Goals

To help guide the development of a useful visualisation research tool, a small survey of existing

researchers was performed. The results of which determined the continual direction for the

project.

4.1 User Survey & Interviews

4.1.1 Survey Design

The intial user survey was developed in collaboration with this projects supervisor and was

distributed amongst a small number of Imperial College Staff and students known to be working

with neural networks. The following areas were addressed.

• Describe your working environment

This had specific subtopics asking about languages used, packages researchers were familiar

with and time taken to develop working networks.

• Describe your training methods

This asked specifically about how often neural network parameters were adjusted, which

of those were considered to be most important, which were the most frustrating changes

made and how these challenges were currently solved.

• Choose which visualisation technique you think is the most useful

A number of examples from the previous section were shown with weights, gradients, acti-

vation mapping, architecture graphing, classification distribution and filters all included.

• Choose which element you think would be most useful to visualise

A list of all the different parameters that could be adjusted during training were given and

could be selected.

• Do you currently visualise neural networks, and if so how? The question asked

researchers to mention specific packages that they commonly use and asked about preferred

methods for interacting with the software, such as .csv upload, model upload, function

integration etcetera.

4.1.2 Survey Results
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In response to working environment it was discovered that the majority of participants used

python based packages however often single researchers would use multiple different neural

network packages depending on the task at hand. For example: CUDA, Caffe, Lasagne, Torch

and others.

For some researchers the tweaking of parameters and adjusting of network architectures took

up the majority of their time working on PhD’s - suggesting tools which aimed to help analyse

the success of these changes could be an invaluable addition to their research toolkit.

In extra comments a wide array of methods were described for deducing the correct network

parameters, or judging the quality of one set versus another. One example demonstrating the

‘hacky’ nature of tools currently used goes as follows: the researcher would get up on the

screen various weight matrices from different training epochs that corresponded to a layer deep

within the network and would simply switch tabs as fast as possible to try and observe changing

numbers or patterns in the data - signs that the network would be training. While this method

appeared to work for this particular researcher, the functionality could certainly be improved

by some simple visualisation implementations of the data.

With respect to commenting on existing visualisations, it was surprising to see that most

hadn’t thought much about visualisation as a serious tool beyond graphing the commonly used

error rates or accuracy. For the majority of time, researchers would simply use visualisation as

a way to demonstrate results, not as a research tool.
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Importantly, while current usage was limited, researchers generally appeared interested in

the possibilities visualisation might hold.

4.2 Goals

A number of goals were set after the initial survey and a review of neural networks, visualisation

theory & existing visualisation software.

• Improve the visualisation tools currently available for neural network researchers

• Provide Visualisations that demonstrate visualisation is actually valuable as a method of

research

• Visualise changing parts of the neural network at a layer level as opposed to a neuron

level: weights / bais matrices, activations etcetera

• Create a visualisation tool that adheres to the visualisation principles set out by Edward

Tufte

• Investigate not just one visualisation method, but explore a range of options to demonstrate

the value of any final product decided upon

• Create a tool that is easy for researchers to interact with

• Provide a visualisation tool that doubles up as a tool for collecting network data for other

data-mining purposes

• Keep a full record of experiments taken, and their outcomes

• Real time visualisation updates to understand if a currently training network is developing

as expected
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5 Data Collection

Visualising neural networks is a complex task. In particular there were three major challenges

to address: producing the data, collecting the data and visualising the data.

This chapter will address the first two of these difficulties exploring the Neural Network

implementations used, the dataset implemented upon and some further considerations made

when collecting the data.

5.1 Neural Network Implementations

Often research work pertaining to neural networks requires some new, advanced, model that

solves a unique task or demonstrates significant efficiency gains. The purpose here however is

quite the opposite. Implementations should be very familiar to those looking into this study.

This ensures that a complex network does not obfuscate the true goal of this report - which is

to demonstrate the value of a visualisation tool for learning about these networks.

Figure 21: UML Snippet: Neural Nets

5.1.1 Feed Forward Net

All network models used were adapted from classic architectures. The feed forward network

was an implementation of a network proposed in the 2012 Geoffrey Hinton paper in which he

explains the concept of drop-out (Hinton et al. 2012) - an idea that addresses over fitting, a

significant problem in machine learning. This network is well understood due to the significance

of this paper as one of the major recent advancements within the neural network research scene.

The network itself takes 784-input values - the (28,28) MNIST images flattened into a single
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array - followed by two layers of 800 ReLU units and an output Softmax layer of 10 units - digits

zero to nine.

Other parameters used from the Hinton paper include a 50% drop-out rate between hidden

layers and 100-sized mini-batches. The implementation in this project differed in the number of

epochs the experiments were run for. This was a trade off that enabled more visualisation tests

to be performed, and is afforded by the minimal need to prove an accurate model, which has

already been demonstrated.

5.1.2 Convolutional Net

The convolutional architecture used throughout the project is a common adaptation of Yann

LeCun’s 1998 LeNet (LeCun et al. 1998), the first network to successfully classify handwritten

digits:

• Layer Input: (60000 [size of training set], 1, 28, 28 [dimensions of MNIST image])

• Layer 1: Convolutional Layer: 32 Filters, (3,3) Filter Size, (2,2) Pooling

• Layer 2: Convolutional Layer: 64 Filters, (2,2) Filter Size, (2,2) Pooling

• Layer 3: ReLU layer: 500 Units, 50

• Output: Softmax: 10 Units

5.1.3 Alteration

The above implementations are know to produce desirable results which gives a test subject

baseline, however they are strategically altered in a number of ways throughout this project.

In order to explore the ability of visualisation methods to capture interesting and important

patterns within a networks output data such that it can influence researchers decisions, the

network must be broken across a number of different parameter settings.

Using a variety of different parameter settings, it is possible to simulate the changes that a

researcher might make when exploring the parameter space for optimal performance.
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Figure 22: UML Snippet: Automatic Networks

To successfully implement these changes, a power range was defined that would run fewer

experiments as it neared the understood value - [1, 2, 3, 5, 7, 11, 17, 25, 38, 57, 86, 129, 194,

291, 437, 656] - these values are examples run for the number of hidden units used within the

networks. Other parameters were automatically adjusted including number of epochs, learning

rate and momentum. Parameters which required tweaking in the neural network code base itself

were less scientifically adjusted - such as the number of hidden layers, or type of non-linearity

used.

5.1.4 Practical Implementation

The neural networks described above were implemented in Lasagne, a library designed for build-

ing neural networks.

Lasagne is a neural network wrapper for the common machine learning python library Theano

which uses symbolic functions that compile before runtime into cython to ensure efficient math-

ematical processing, often displaying efficiency gains of up to 10 times.

Lasagne was chosen as the network implementation package after the survey of participants

revealed that the largest minority of researchers currently used Python implementations of

neural networks. Theano could have also been used, however was deemed overly complex for

the purposes of this project.

It’s important to note that in this incredibly fast moving field that the frontrunning tech-

nology is continually changing and throughout the course of this project another library Torch

has become increasingly popular due largely to it’s ability to handle Recurrent Neural Networks.

These haven’t been mentioned in this report for simplicity reasons.

5.2 Dataset

All experiments for this project were conducted using the MNIST dataset. The dataset is widely

used as a benchmarking dataset not just within the neural network community but in the wider

machine learning community as a whole, making it appropriate as a test dataset. The dataset
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itself contains 60,000 training images and 10,000 test images. Each image is a 28 pixel by 28

pixel hand-written digit from one to nine.

Figure 23: 100 MNIST digits

The CIFAR datasets could have also been used however MNIST was chosen due to its

representation being confined to one set of intensity values, rather than the more complex

CIFAR set with Red, Green and Blue dimensions to consider. The below images demonstrate

the simplicity of the dataset.

(a) MNIST digit (b) Intensities

Figure 24

5.3 Collecting Output Data

There was a lot of data handling within this project, a few considerations about this are described

below.

• Data used online was stored in a compact format. This was achieved using a MongoDB

database to store JSON objects in binary - BSON. In earlier iterations of the project this

was interfaced with using a JavaScript backend, and in the later iteration of the project

using the python library PyMongo.

• Data that researchers use to assess the quality of their models was also stored and in a

common format that can be easily interrogated. This was achieved by using Python’s

sophisticated sys and os packages to store the weights, biases, activations and other

parameters in csv format.

• Data from the neural networks must retain its shape for easy importing with the python
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library numpy. This was achieved by either using numpy to process the data, or by creating

bespoke input-output functions that would deconstruct and reconstruct the data’s shape.

• Image data was be transformed in order to be processed with MongoDB. This is achieved

by preprocessing the data with the python library base64 which parses the images into a

Float32 array in base64 notation - this then usefully becomes small enough to store in the

MongoDB document.

• Coordinate data for scatter plots was stored in a condensed format that enables easy

interaction with the d3.js visualisations. Here, (500, 2) matrices are numpy.reshaped to

(1000,) single dimension arrays which can be easily parsed by the d3.js client configuration.

• Activation data was temporarily stored before being converted into scatter plot x-y data

by the tSNE algorithm.

Figure 25: UML Snippet: Saving Functionality

The data collection methods described above interact with the complex machinery of a neural

network. To effectively store the relevant data it was important to fully understand how the

discrete pieces of information interacted with one another. The following entity relationship

diagram describes the majority of the features that this concerned.
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Figure 26: Initial ER diagram

5.4 Evaluation

The aim of this first section was to explain to the reader the foundation upon which this project

was built. Namely, two well understood neural networks that get modified in various ways away

from understood parameters that ensure optimal performance. This is done to better understand

how poor networks may appear when visualised, and to observe differences between those and

the networks known to be of industry standard. The section also explains the importance of

gathering the data outputs of these networks in an appropriate fashion, and the reasons for

choosing the MNIST dataset.

With a basic understanding of the neural networks and dataset used, and an understanding

of the data collection methods, the remainder of the report will explore how this data can now

be visualised.
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6 Dimensionality Reduction

Neural Networks are famous for their ability to comprehend complex datasets such as in areas

of vision or speech recognition. One of the principle complications in these fields results from

complex high-dimensional datasets.

Figure 27: CIFAR-10 Cat with RGB matrices

The image above is 248 pixels wide, 400 pixels tall, and has three colour channels Red, Green

and Blue - which to the computer is stored in a multidimensional array of dimensions (248,400,3)

or 297,600 numbers. When this image is passed into the computer it understands this data as

297,600 different data points - not as a cat.

As this image passes through a neural network, the number of dimensions (248,400,3) changes

to make it easier for the network to classify as a cat - one of 10 classes in the CIFAR-10 dataset.

So while a human can understand this image as a cat, when the data is transformed to (512,20,2)

dimensions the cat is no longer recognisable - but to a computer, may be more ‘cat-like’.

It has been suggested that one reason for the success of neural networks is that they discover

optimal representations of the data that allow for more accurate classification (Hinton 1986).

These representations are captured in the later layers transformed data-space.

For an example of this take two curves: while at the input space of the network a relatively

complex line is required to divide two curves on the plane, each new layer transforms the spatial

data creating a new representation that is easier to classify with a more simple hyperplane.

(a) No hidden layer (b) Hidden Layer - easier to separate

Figure 28: Chris Olah: Representations that warp the data

In order for the data to be transformed to this new representation, it must undergo a sequence

of manipulations. A tanh layer for example processing the function tanh(Wx + B) consists of;

• a linear transformation by the weight matrix W

34



Visualising Neural Networks, by Sam Green 4th September, 2015

• a translation by the bias vector b

• and a point-wise application of the tanh activation function

Intuitively, what is occurring here is a stretching and warping of the space to make it easier to

linearly divide - as can be seen above. Note that it does not cut, break or fold the space as it

must retain it’s ‘topological’ properties (Choi & Horowitz 2005).

Visualising the information contributing to these representations - the weight matrix, the

bias vector and the activations - in a way that is understandable to the human brain, and

therefore useful as a diagnostic tool, requires mapping the vast number of dimensions present

to the three spatial dimensions that humans understand with ease.

This section will explore both visualising high-dimensional data, where the aim is to retain

data fidelity and show all of these high dimensional data points, and the notion of dimensionality

reduction - where the aim is to instead reduce the number of dimensions mathematically.

6.1 Visualising High-Dimensional Data

Visualising high-dimensional data is a very important problem in several different domains and

is a very well explored problem. A number of techniques for visualising high-dimensional data

exist, a summary of which was composed by (Cristina et al. 2003).

This covers techniques by a number of different authors that could be useful for the visualising

of neural network data;

Figure 29: Chernoff Faces

Chernoff Faces are iconographic visualisations of faces by (Chernoff 1973); each point in

k-dimensional space, k < 18, is represented by a cartoon of a face whose features, such as length

of nose and curvature of mouth, correspond to points in the data. Thus every multivariate

observation is visualized as a computer-drawn face. Looking at the recognisable faces it’s easy

to see which data points are similar and which parameters they share in common. For example,

those faces with larger eyes could represent similarities across a gender dimension. This technique

is not useful for most neural networks however which have greater that 18 dimensions, but could

be compared with some of the low-fi visualisations explored earlier.
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Figure 30: Pixel Based Techniques

Pixel Based ; represent as many data points as possible on the screen at the same time by

mapping each data value to a pixel on the screen and rearranging those pixels to suit the source

(Keim 2000). One example is to use a gradient of colour to represent the value of a data-point,

and multiple dimensions may be show in different as slices tiled together.

Figure 31: RadViz

Radial Coordinate Visualisation was designed by(Hoffman 1999); which for an n-dimensional

visualisation, n lines emanate radially from the center of a circle and terminate at its perimeter;

here each line is associated with one attribute. The points that sit in amongst the radial por-

tions represent the data described between the dimensions in a way that is similar to an x-y plot.

Evaluation

While these tools do have their uses as visualisation techniques, when it comes to exploring

the high-dimensional data of neural networks they have been criticized (Maaten & Hinton 2008)

as simply providing the tools to display more than two data dimensions, and leave the more

difficult task of interpretation to the viewer. With the number of dimensions used in real-world

neural networks often in the thousands, these techniques may provide limited insight, and so

it’s important also to look at dimensionality reduction which performs some of the data inter-

pretation for us.

6.2 Dimensionality Reduction

Dimensionality reduction differs from the visualisation of high-dimensional data by instead con-

verting the high-dimensional data set X = {x1, x2, ..., xn} into a low-dimensional data set

X = {x1, x2} that can then be displayed easily in a standard recognisable formats such as
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the scatter plot. Dimensionality reduction aims to preserve as much of the significant structure

of the data in higher-dimensions as possible while generating a low-dimensional representation

that is easier for the researcher to interpret. This is fundamentally important for visualising

neural nets where activations are often many thousands of dimensions.

These algorithms work by drawing a notion of how successful this dimensional reduction is

by assuming that for any two data points, xi and xj there are two notions of distance between

them that can be compared. First, is the distance between those points in the real world space,

for example the L2 distance d(xi,j) =
√∑

n(xi,n − xj,n)2, and the other is the distance between

the points in the visualisation, dviz(xi,j), such that a cost function of the visualisations success

can be defined.

If the cost C is high, then the distances are dissimilar to the original space, if low they

are similar, and if zero the visualisation is a perfect representation. It’s almost impossible

however to get a perfect representation in all aspects, so different cost functions provide different

compromises and insights. Once the cost function is designed there simply exists an optimisation

problem that can be tackled though a standard process such as gradient descent to ensure that

points are optimally visualised with respect to the cost function. The cost function for standard

Multi-dimensional Scaling (Torgerson 1952) is shown below:

C =
∑
i6=j

[d(xi,j)− dviz(xi,j)]
2

Another reduction method is Sammon’s mapping (Sammon 1969), which aims harder to

preserve the distances between nearby points than those further away. If the two points are

twice as close in the original space than two others, it is twice as important to maintain the

distance between them. This emphasises the local structure at the compromise of the global

structure in the data:

C =
∑
i6=j

[d(xi,j)− dviz(xi,j)]
2

d(xi,j)

A number of other techniques were reviewed by (van der Maaten et al. 2009) describing Principle

Components Analysis, PCA, (Hotelling 1933) - which finds the angle that spreads out the points

the most in order to capture the largest variance possible, and Multidimensional Scaling as seen

above - as linear techniques that keep low-dimensional depictions of dissimilar points far away,

but which fail to keep those data-points which are similar close together in the lower dimensional

depiction placing an emphasis on global structure.

Figure 32: MNIST - a Locally Linear Embedding
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In addition to Sammon’s mapping described above, (van der Maaten et al. 2009) also sites

a number of other non-linear dimensionality reduction techniques that aim to preserve the local

structure of data including; Curvilinear Component Analysis (Demartines & Herault 1995),

Stochastic Neighbour Embedding (Hinton & Roweis 2002), Isomap (Tenenbaum et al. 2000),

Maximum Variance Unfolding (Weinberger & Saul 2004), Locally Linear Embedding (Roweis &

Saul 2000), Laplacian Eigenmaps (Belkin & Niyogi 2002).

These techniques all perform well with artificial datasets, however are criticised for not

being capable of retaining both local and global structure in a single data map. Even semi-

supervised variants are not capable of separating simple datasets such as MNIST into it’s natural

clusters (Song et al. 2007). Neural network data often requires the retention of both of these,

and (Maaten & Hinton 2008) describes a solution to this problem in the form of t-Distributed

Stochastic Neighbour Embedding.

6.3 t-Distributed Stochastic Neighbour Embedding

t-Distributed Stochastic Neighbour Embedding (Maaten & Hinton 2008) has provided a successful

and widely used alternative to the dimensionality reduction problem. tSNE, as it is abbrevi-

ated, captures much of the local structure of high-dimensional data, while also revealing global

structure such that the presence of clusters at several different scales can be observed.

Figure 33: tSNE

tSNE can therefore be viewed as preserving the ‘topology’ of the data, which as explained

previously is incredibly important if the representations formed by these networks are to be

successfully captured. tSNE works by constructing for every data point a notion of which other

points are it’s ‘neighbours’ and tries simultaneously to ensure that all points in the data have

the same number of neighbours. In this sense is a lot like a nearest-neighbour graph, however

instead having a set number of neighbours connected by edges, and non-neighbours for which

there are no connections, data points in the tSNE reduction have a continuous spectrum of

neighbours, for which they are neighbours to different, non-binary, extents. This makes tSNE

very powerful in revealing global clusters and local sub-clusters within the data - which is ideal

for working with complex neural network activations that display both.

The one downside of tSNE is that it’s prone to getting stuck at local minima, and due to it’s

increased complexity is more computationally expensive to run. Changes cannot be made and

visualised in real time on standard machines and can take any number of hours, or days even,

to produce with incredibly large datasets.

38



Visualising Neural Networks, by Sam Green 4th September, 2015

6.4 Evaluation

Not one of the dimensionality reduction techniques mentioned appears to be superior. They are

largely complimentary, and the choice of which to use intuitively depends on the needs of the

data-set and the usage scenario.

Each has it’s own trade off as there can be no exact mapping from high-dimensional space

to low dimensional space.

PCA preserves linear structure, MDS preserves global geometry and tSNE tries to preserve

a topological neighbourhood structure.

For the remainder of this project, the data produced by the neural networks will be reduced

in dimensions using the tSNE algorithm, or a faster derivative Barnes-Hut-SNE (van der Maaten

2013).

Looking into neural networks it is unclear what exactly researchers might be looking for,

be it variance, local structure, global structure, or some unknown. tSNE preserves the overall

topological structure and thus provides a good solution to this problem.
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7 Iteration 1 - Animation

7.1 Introduction

Reducing the dimensionality of our data enables us to plot the activations in a human compre-

hensible way, but is in itself not enough. While it is possible to simply plot everything, the sheer

number of tSNE plots would quickly put us back in the position of being unable to compare

data due to an overloading of information.

Instead, by looking back to Edward Tufte’s principles of visualisation and observing those

which have not achieved, the solution becomes immediately obvious: animate the data thus

condensing a large number of tSNE plots into short films where patterns can be quickly observed.

Figure 34: In the highlighted image it’s clear to see the network is learning to distinguish between
classes

7.2 Design

User interface components for the tool were sketched and evaluated in response to the needs of

neural network researchers and in relation to visualisation best practices.
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(a) Initial Sketch (b) Screenshot

Figure 35

This images above show the animations running past the researcher on the screen after they

have automated the testing of various models. With a number of animations sitting side-by-side

the researcher can observe whether the networks improve across the parameter tuning domain,

or not, and can observe emerging patterns within the animations themselves.

7.3 Architecture

This early iteration was developed in a lightweight manor in keeping with the lean product

development methodology (Blank 2013). This development methodology states that a Minimal

Viable Product (MVP) should be built when testing ideas to enable fast testing and learning,

which can then be reapplied to the product later without fear of completely rewriting the entire

product - something that occurred several times through this project.

Figure 36: Lean Development Cycle

Here the MVP was a Python function that could be copied into the researchers neural

network and would automatically run after the network had completed training. The imple-

mentation extracted the tSNE plot coordinates from the MongoDB database, processed them

using the numpy library into a format that could then be processed with another Python library

designed for making films, MoviePy, which transformed the numpy array of two dimensional

tSNE coordinates into a chronologically ordered, by epoch, .GIF animation. These GIF’s were

stored locally and could be displayed as desired.
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Figure 37: UML Snippet: Animation Processing

7.4 Evaluation

7.4.1 Neural Network Perspective

Unfortunately it was not possible to get a large range of feedback on this iteration due to time

constraints, however the little feedback that was attained from fellow students researching with

neural networks suggested that this version provided “pretty” images to look at, but nothing

particularly useful. In particular the following reasons for this were:

• The lack of ability to pause the animations to better understand stand-out abnormal

tSNE plots. This was possible by looking back into the file directory of saved backup

plots, however provided too much friction for any reasonable use case scenario.

• Even with the ability to pause, the animated clips were not of high enough resolution, so

where a researcher to stop the animation, not much could be discovered anyway.

7.4.2 Visualisation Perspective

From a visualisation standpoint, as assessed in accordance with Tufte’s principles, the animations

were far more successful than the previous stand alone images, and allowed the following Tufte

principles to be satisfied:

• Through the animation of several tSNE plots, Edward Tufte’s eighth principle to encourage

the eye to compare different pieces of data is now satisfied. The animation naturally

encourages the eye to observe differences in the data as it can be seen to transform from

one spatial formation to another.

• Tufte’s seventh principle to augment short term memory through visual patterns is also

satisfied. While it was possible previously to compare tSNE plots by flicking through

several images, this process is automated in a continuous fashion which leaves an imprint on

the retina of the previous image thus augmenting short term memory with the visualisation.

In response for the call to interrogate the data more closely, it was decided that a key

improvement would be the ability to zoom in and out of the data without loss of image quality.

7.4.3 Implementation Perspective

As mentioned previously this implementation was an MVP solution that could enable a suc-

cessful iterative process. This gave enough insight to indicate that everything should become
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easily accessible under one package, rather than requiring the researcher to grapple with many

implementation details. The implementation was successful in fulfilling its purpose.

43



Visualising Neural Networks, by Sam Green 4th September, 2015

8 Iteration 2 - Online & interactive

8.1 Introduction

The second iteration focussed on placing the previous processes online and enable the interactive

plots needed for a closer inspection of data.

Iteration two used an all JavaScript development stack to collect the activation data, pass

it to the client side, and then use a JavaScript implementation of the tSNE algorithm to plot

each of the interactive graphics. Each plot would grow as the tSNE cost function was fitted, and

researchers could then zoom in or out at any given point to analyse the local or global structure

of the emerging tSNE plot.

(a) (b) (c)

Figure 38: Screenshots of growth from iteration two

8.2 Design

Where the previous iteration focused on inter-model differences, this iteration was influenced by

Andrej Karparthy’s tSNE visualisations (Karparthy 2015) where the model is visualised over

the short duration of fitting. As the tSNE cost function is optimised, the visualisation changes

- appearing as a series of animated steps. As shown in the initial sketch designs below the aim

was to show how tSNE representations were gradually formed.

The two early sketches below demonstrate initial interaction ideas. Here the researcher would

be able to select the model, epoch and layer corresponding to the tSNE plot they wanted to

interrogate, and the interactive functionality would allow them to do so far more effectively than

before.

(a) Using Angular.js Repeat with Dropdowns (b) Using Angular.js Sliders

Figure 39
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8.3 Architecture

In order to bring the content online the MEAN development stack: MongoDB (for the database),

Express (for the routing), Angular (for the front-end interaction) and Node (the server), was

used. In addition, in order to produce the much called for SVG plots the D3.js, or Data Driven

Documents library was used.

With the rest of the project written in JavaScript, it became clumsy to interact with the

Python tSNE algorithm. For this reason tSNE.js, a JavaScript implementation of the tSNE

algorithm produced by Andrej Karpathy, a Stanford PhD student, was used. This second

implementation followed the example provided by Karpathy online in order to produce the tSNE

plot that grows over time (Karparthy 2015). Below is his example used with word-embeddings,

where words from a vocabulary are mapped to vectors of real numbers in a low dimensional

space.

Figure 40: Andrej Karpathy Implementation

Below is the D3.js, tSNE.js class that implemented this transformation of data.

Figure 41: UML Snippet: Visualisation

8.3.1 Node Server

Node.js was used in this iteration of the product as the backend server. It is a platform built

on Chrome’s JavaScript runtime for easily building fast, scalable network applications. Node.js
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uses an event-driven, non-blocking I/O model that makes it lightweight and efficient, perfect for

data-intensive real-time applications such as neural network visualisations.

In 2011, a package manager was introduced for Node.js library, called npm. The package

manager allows publishing and sharing of open-source Node.js libraries by the community, and

simplifies installation, updating and un-installation of libraries (Dahl 2009).

The purpose for using Node was to ensure if the project were to be developed further the

useful node package manager, npm, could be used to easily distribute the tool amongst the

community. Indeed, npm is already a common method of sharing proprietary neural network

software within the deep learning community.

8.3.2 D3 Visualisation Library

D3.js, or Data Driven Documents, is a JavaScript library for producing dynamic, interactive

data visualizations in web browsers.

D3 allows the binding of arbitrary data to a Document Object Model (DOM), and then

apply data-driven transformations to the document. For example, you can use D3 to generate a

HTML table from an array of numbers, or use the same data to create an interactive SVG bar

chart with smooth transitions and interaction(Bostock et al. 2011).

D3 is extremely fast, even when using large datasets, making it ideal for working with

the large output of the neural networks. The dynamic behaviours enabled for interaction and

animation make it highly suited to the tasks in this project.

D3 uses a sophisticated method of joining data with the DOM. With three simple commands

(Enter, Update, Exit) D3 enables the programmer to explain a relationship between the data

and the scalable vector graphic. For example, a programmer might declare that circle elements

should correspond to data, such as in a scatter plot. This contrasts with the more sequential

process commonly used where a program may be written to create circles, collect all the circles

and then finally assign each data point to a circle.

Figure 42: D3 Data Binding

Data points, such as the coordinates in a tSNE plot, that are joined to existing circles produce

the update selection. While unbound data (data for which there are no circles) produce the enter

selection. Then, any remaining unbound circles produce the exit selection, where they are often

removed. The significance of this is that a scatter plot such as those used in this project can be

created with not much more code that the following:
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Figure 43: D3 managing data responsively with ease

The simplicity of the D3 library is what makes it so powerful, and it was chosen in this

project for that reason. Ideally with an implementation started in d3.js, other researchers can

build upon the software with relative ease to continue to create extensions to this tool.

The following images show the tooltips used in the second iteration of the project and the

relative ease at which they can be encoded.

(a) Text-tooltips (b) Easily adaptable Tooltip d3.js Code

Figure 44

8.4 Evaluation

8.4.1 Neural Network Perspective

It was agreed that this implementation was far superior to the GIF animations. The ability

to zoom and interrogate data at different scales was welcomed, and the retention of quality in

doing so was also a marked improvement.

The simple use of tooltips to display the actual value of the data, rather than just using

colour, was a great addition as it allowed a researcher to first zoom in on some unlikely data

samples and then see which exact data samples were causing the problem.

While the product was deemed to be a marked improvement on the previous iteration, there

were still an number of suggested improvements.

The version was criticised for taking too long to process each tSNE plot. This made it

hard for researchers to flick between layers or epochs in order to start identifying patterns - and

violates Edwards Tufte’s seventh principle that visualisation should augment short term memory

through visual patterns. Here, the patterns emerged too slowly thus providing an ineffective

means of comparison. The slow result is likely due to the slow performance of the client side

implementation of the tSNE.js algorithm which wasn’t designed for JavaScript.
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While the tooltips provided a useful way of understanding which output classification in the

range of one to nine was being represented, they were ineffective in demonstrating exactly which

input values were causing this classification decision.

8.4.2 Visualisation Perspective

Significant visualisation improvements were made through the use of D3.js transitions to smooth

over the difference between each step in the iterative refinement of the tSNE plot. These transi-

tions are typically used for added effect or embellishment, however in this instance they provide

an important functional use - allowing the eye to easily follow specific points trajectories in

space. This is useful in allowing the researcher to observe anomalies or peculiar changes in the

data over time.

Also, in addition to the principles held in iteration one, two more Tufte principles were

achieved.

• Through the use of tooltips, an often used user interface element that provides more infor-

mation about a topic upon hovering a computer mouse over the item of interest, satisfying

Tufte’s sixth principle to visually highlight your message.

• In addition, where previously with the animations there was no way to dig into the data

without decreasing quality cause by low resolution videos - the capability of the browser

to handle Scalable Vector Graphics, SVGs enables the researcher to zoom in on the large

data sets to observe the local structure captured by tSNE, and to zoom out observing

global structure. This allows us to achieve another one of Tufte’s principles of quality

visualisation “Reveal the data at several levels of detail”.

8.4.3 Implementation

The use of the MEAN stack and D3.js were important additions to the development stack and

enable the tool to be more effective through lossless rendering and interactivity. In addition

Node.
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9 Iteration 3 - Epochs & Layers

9.1 Introduction

Where the previous iteration focussed on the tSNE optimisation of a single layer of activations

output from a specific model, epoch and layer, the new version gives control from a model-level,

enabling quick switching between epoch and layer. First the researcher selects a model, then

on the visualisation page uses a control-box with layer along the x-axis, and epoch across the

y-axis to preview the tSNE plot corresponding to the layer-epoch selected.

(a) Screenshot: Epoch 14, Layer 3 (b) Screenshot: Epoch 2, Layer 2

Figure 45: Screenshots of the final product with the control plot on the left, and display plot
on the right

Within the display box, the new tSNE plots are rendered using d3.js, retaining the ability to

zoom in and out upon the data and interrogate individual points. In addition, the d3 transitions

are now being used to show how individual data-points are moving between layers and epochs

rather than simply across the tSNE optimisation process.

This allows researchers to answer a number of questions very rapidly. For example, ob-

serving changes across layers may demonstrate if the back-propagation algorithm is successfully

penetrating all layers and producing different representations. Observing changes across epochs

demonstrates whether these layers are learning over time, or if they are simply arbitrarily trans-

lating the data in space in ways that doesn’t amount to learning anything new.

Another change is the addition of image tooltips to map the data points exactly to the input

data by showing the input image that each data point represented as a HTML5 canvas rendering.

This is particularly useful in allowing researchers to make sense of commonly misclassified data

points, such as sevens with ones, or eights with threes.

9.2 Design

There are two important design elements within this iteration: the control scatter plot that the

researcher uses to select the corresponding tSNE plot, and the display scatter plot, tSNE plot,

that the researcher can interrogate by zooming in to observe local patterns, zooming out to

observe global patterns, hovering over points to see which input they correspond to and as the

control plot is panned over also observe as the individual points get reorganised into different

structures.
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A number of different methods were tried for the control unit, including using Angular.js

sliders, check-boxes and drop down menus. However these all failed to unify the transition

that was occurring; they failed to highlight where exactly a layer-epoch combination sits with

respect to any other layer-epoch combination - something that the user interface element decided

upon did well, a simple scatter plot. In addition the scatter plot enabled the product to have

consistency in its visual form.

Figure 46: Wireframe Design

The new use of D3.js transitions was to animate the change from one representation of a

data point (or datum) to another via a number of rendered transition states. This allows the

human eye to follow how specific points move with ease, and enables us to fulfil more of Tufte’s

guiding visualisation principles to augment short-term memory loss with visual patterns - here

the transitions literally allow us to follow specific data points as they move across the screen.

(a) Simple d3.transition code (b) Transitions mapped between two plots

Figure 47

D3.js has yet another very useful tool d3.scale.linear which essentially normalises the

data within the visual range on the screen. Mapping the input domain to the output range, and

thus fitting the data so the user doesn’t have to worry about data distortion.

Figure 48: d3 scaling elements

50



Visualising Neural Networks, by Sam Green 4th September, 2015

9.3 Architecture

9.3.1 Entirely Python

In iteration three, the node.js and express.js back-end components used previously were re-

placed with Python’s Flask, a Sinatra-like micro web application framework written for Python.

The framework is used by companies such as Pinterest and LinkedIn and serves as a far more

appropriate product for the back-end.

The entire architecture has now been streamlined with a Python only back end; from the

neural network, to the database, to the RESTful server and post-processing functionality. The

entire front end is JavaScript using Angular.js for basic manipulation of the DOM and d3.js for

the interactive visualisations. They speak to each other through a basic RESTful API.

Figure 49: The architecture behind the whole system

9.3.2 Streamlined Database

In addition to the restructuring of the architecture to have a clearer divide between back-end

Python and front-end JavaScript - the MongoDB database is now manipulated using a python

toolkit PyMongo.

This opportunity allowed a streamlining of the database structure as well, from the model

represented in the ER schema at the beginning of the report to the following, perhaps slightly

clumsier, however far easier to interact with JSON storage format - stored in Mongo’s BSON

format.
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This new database schema stores important parameters for understanding the neural net-

work, as well as the key data required for the visualisations.

Figure 50: UML Snippet: PyMongo Interaction

Figure 51: Simplified JSON scheme for PyMongo

9.3.3 Tooltip Adaptation

A small change made to the text tooltips was the addition of a fill to the background - enabling

the text to pop out.

Figure 52: Clearer Tooltips

However a more major change was the addition of image-tooltips. Initially this involved

trying a number of options that involved the uploading of .png images rendered each time the

researcher hovered over a point. This was slow and damaged the rapid interaction afforded

through the use of d3.js.

52



Visualising Neural Networks, by Sam Green 4th September, 2015

Figure 53: Chris Olah adopted image tooltips

After some unsatisfactory attempts and exploration of other methods, the method used in

Chris Olah’s blog post (Olah 2014a) was discovered. It took a substantial amount of time to

decipher how the implementation worked, however it used the same base64 arrays that had

been used previously to store the MNIST dataset in the Mongo database, and used HTML5

Canvas to render the points in the browser. The length of the input (784 pixels) was used to

index the array and render it live.

Initially Olahs code was hacked onto the visualisation code from the previous iteration,

however this was unsatisfactory and bug-prone. Fortunately Olah had also implemented a

version of the scatter plot for another post, and it was decided to use the majority of his code

governing the scatter plot and the tooltips, and build upon that to create the interactive.

9.4 Evaluation

9.4.1 Neural Network Response

This new product is a vast improvement towards achieving the goals set out. Enabling re-

searchers to process information by epoch and layer has clear advantages:

A researcher may compare an earlier epoch with a later one. If the externally measured

loss values had started to plateau, the researcher would expect that the network wasn’t learning

much. However with the ability to look into the data, the researcher might observe that the

network is actually trying to classify one hard example continually reshaping the space around

it, and in a few more hundred epochs could learn to classify this example that doesn’t contribute

much to the error but which is actually a very important example to classify. Consider Google’s

own algorithms that left them classifying people with black skin as monkeys - a severe mistake

that could potentially be identified with this tool.
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Figure 54: Epoch 2, Layer 1 from different models: demonstrating how vastly different model
representations can be.

A researcher may also look by layer to check that activations are indeed propagating from

one layer to the next; serving as a proxy to see that the network is actually adjusting the weights

later in the network. It’s a common, and sometimes hard to diagnose problem, if weights are

not changing sufficiently due to poor network initialisation or some other complication. Again,

the tool performs excellently for such a task.

However, after observing that several of the tSNE plots appeared to simply be rotations of

one another it was questioned whether researchers would accurately be able to diagnose which

changes were the neural network actually learning, and which were simply transformations in

space. For example, a network in epoch four could have a plot that appears to face north, then

at epoch eight, south, and again at epoch twenty four, north. Here there is a full rotation of the

data where nothing new is being learnt, however due to the control implementation of panning

across epochs and layers it’s unlikely that the researcher would be able to pick this up any ease.

9.4.2 Visualisation Response

The key visual changes here were the re-implementation of transitions between layers and epochs

enabling the researcher to observe patterns more accurately, and in addition ensuring that

Edward Tufte’s guide was still being followed.

The other major change was the introduction of the image tooltip. Previously the text-

tooltip enabled the researcher to view the classification result however here each data point

directly corresponds to one of the input values, each of which is individually rendered in the

browser and provides a much needed extra dimension of exploration within the project.

9.4.3 Implementation Response

There were a number of significant implementation changes in iteration three; a more streamlined

database and a properly separated Python back-end and JavaScript front-end. This makes

for cleaner interaction within the backend and between the backend and frontend through the

RESTful API. In addition the adapted visualisation infrastructure makes it easier for researchers

54



Visualising Neural Networks, by Sam Green 4th September, 2015

to interact with in the future.

Figure 55: Adapted & Extended Olah D3.js visualisation implementation
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10 Iteration 4: metaSNE & Principle Component Analysis

10.1 Introduction

Iteration four addresses the problem discovered through iteration three of rotational data. The

main focus therefore of this section is an exploration into methods for mapping that rotational

data to a space that enables researchers to better decipher it. In particular this section looks at

principle component analysis and Varimax rotation.

10.1.1 Isometries in Representations

In the tSNE plots that visualise the representations being formed by the neural networks it’s im-

portant to distinguish which plots demonstrate new pieces of information being learnt, and which

simply appear to be learning however are just translations in space, or are simply isometries of

one another; rotations or reflections.

In his blog post on Representations (Olah 2014b) explores this notion of isometries stating

that for any representation X there is an associated metric function, dx, which gives us the

distance between pairs of points within that representation. For another representation Y ,

dx = dy if and only if X is isometric to Y . This is exactly the form required that can remove

isometric data.

This transformation into metric space can be complex, so the approach taken instead ap-

proximates this by using Principle Component Analysis to mean centre and find the maximal

variance in the data, and Varimax Rotation to subsequently orthogonalise the mappings to

create a dataset that has isometries which can be easily classified.

Figure 56: This experiment demonstrates two layers where the data has essentially effectively
just been rotated - demonstrating nothing particularly new has been learnt

10.2 Design

The fourth iteration of this project is where the development ends. There are still improvements

that can be made, and these will be discussed in the concluding section, however by this point

there is certainly a tool that can be utilised to make important decisions when training neural

networks.

There are five key components to this final tool:
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• First, the neural networks themselves: two neural networks are provided with the tool,

a convolutional network and a feed forward network as described in the chapter on data

collection. These two classes are easily adaptable under the Lasagne guidelines.

• Second, the saving functionality afforded by PyMongo and the MongoDB database that

saves key data in an easily accessible format to a local data store, and all processing

functions that allow this to integrate seamlessly with the Lasagne neural networks.

• Third, the post-processing functionality that provides the PCA-Varimax / meta-SNE plot-

ting explained later in this chapter.

• Fourth, the RESTful API providing data to the client.

• Fifth, the front end Angular.js and D3.js application consisting of an easy to use homepage

where the researcher can select the model they want to explore, and the visualisation pages

where the researcher can interrogate their data.

Below are two sketch diagrams that demonstrate the simplicity of the front end.

(a) Homepage (b) PCA interaction

Figure 57

10.3 Architecture

The final architecture retains a number of components that were described in the previous

section; however the addition of the Principle Component Analysis and Varimax Rotation post-

processing is explored below.

10.3.1 PCA-Varimax Post-Processing

In order to determine the success of the removal of isometric data by the post-processing function,

a simplified dataset was created.
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Figure 58: The test dataset

The test set, above, was a number of uniformly generated x and y points that when plotted

produced a dataset that consists of two identical triangles that had been rotated by differing

amounts, and three identical squares that had likewise been rotated by differing degrees with

differing offsets. This creates an artificial dataset that makes it easy to determine the success of

the post-processing functions.

Three different approaches were used in an attempt to generate an effective metaSNE plot:

Image Compression & metaSNE

The first method took influence from the tSNE plots created of the MNIST dataset where

each of the 28 pixel by 28 pixel images had their dimensions collapsed into a single 784 pixel

array before the tSNE algorithm was applied to the several thousand in the validation dataset.

With the scatter plots, in order to do this, the (x, y) coordinates needed to first be trans-

formed into an image with discrete dimensions. For example, a 500 pixel by 500 pixel image.

There were a number of different methods that could have been employed here, however

the method adopted was the creation of a two dimensional histogram where should a point to

appear within a given coordinate bin, then that bin would be assigned the average of all points

situated within it. This can be observed in the image below.

Once the images were generated, tSNE was reapplied and thereby creating a metaSNE plot.

As can be seen from the figure below this works for the most part due to the relatively high-

fidelity of the selected dimensions. However, where two or three points are situated very close

together such that they enter the same bin, the transformation taking an average distorts the

dataset somewhat representatively. This method proved to be relatively unsuccessful at creating

the desired outcome, or metaSNE plots, once tSNE was reapplied.
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Figure 59: Imagifying Scatterplots

Principle Component Analysis

The second method attempted was to first apply Principle Component Analysis, PCA, to the

scatter plot in an attempt to remove the majority of the rotational differences, and mean-centre

the data before the reapplication of the tSNE algorithm upon these plots.

PCA is a statistical procedure that converts the set of points along a number of principle

components. The largest principle component has the largest possible variability in the data,

and each succeeding component has the highest variance possible under the constraint of those

preceding it.

This mapping of plots along principle components should remove the majority of rotational

data held within the plots, and worked well as is demonstrated in the plot below on the left.

This second method was far more successful than the first in removing isometric data, how-

ever upon application of tSNE the points were disappointingly classified.
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(a) Application of Principle Com-
ponent Analysis to the test-set

(b) Application of Varimax Or-
thogonalisation to the test-set

Figure 60

PCA & Varimax Rotation

After the unsatisfactory results produced by the PCA process, it was decided that the isom-

etry free datasets needed to be simpler for the tSNE algorithm to map them effectively.

After much searching, a solution presented itself in the form of Varimax Rotation (Lin 2010)

which orthogonalises the data such that the actual coordinate system is unchanged, but the

orthogonal basis that is being rotated is aligned to those coordinates. This produced the plot

on the right which aligned the test set perfectly into its original triangles and squares, they were

centred directly on top of one another - thus removing the isometric data as desired.

The plot below demonstrates on the left the Barnes Hut SNE output when reapplied simply

to the PCA rotated data, and the plot on the right after the data has occurred the Varimax

Rotation - the former fails to accurately represent any of the data as similar, while the latter

does exactly as desired - separating the squares from the triangles, and demonstrating that they

are simply slight variations of one another.

(a) Barnes Hut SNE after applying
Principle Components Analysis

(b) Barnes Hut SNE after apply-
ing Principle Components Analy-
sis, and Varimax Orthogonalisa-
tion

Figure 61

PCA and Varimax Rotation is used in the final tool to enable researchers to get a better

grasp upon how similar tSNE scatter plot really are, ensuring for more accurate pattern spotting

across a researchers models.
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Figure 62: UML Snippet: Post-Processing

10.3.2 A tool for visualising neural networks

The final architecture for the project remains very similar to that of the previous iteration.

The hybrid UML, entity relationship, flow diagram below explains the interconnection be-

tween the various parts:

• Client Side

– Experiment selection

– Visualisation selection

– Browse by animation section

– Interactive section; where the researcher can explore by Epoch, Layer, PCA/Varimax

centred, or pure meta-SNE (tSNE applied directly to tSNE).

• RESTful API

The RESTful API enables the site to load quickly without having to upload vast amounts

of neural network data, or heavy image data.

• Server Side The server has two primary components: the database and the neural net-

work processing elements. The neural network processing however is split into a further

three parts:

– The Neural Networks themselves which can be called from the network automation

section.

– The helper functions which facilitate the extraction of data from the neural network

and store it appropriately

– The post-processing unit which extracts from the database all stored tSNE plots, and

processes them to produce the data for the meta-SNE plot and PCA/Varimax plots.
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Figure 63: UML, ER, Flow diagram hybrid map of the visualisation tool
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10.4 Evaluation

These two final screen shots demonstrate the control plot side by side with the display plot.

The control plot has been created using the PCA-Varimax post processing such that points

next to one another are similar or may be rotations of one another. The display plot shows

the tSNE data once it has been transformed along the principle components and orthogonalised

with Varimax.

The homepage is a simple place where the researcher can select a model from the database,

which will then be passed up to the client side application and the researcher can browse by

either: Epoch & Layer tSNE, PCA & Varimax tSNE, or, tSNE tSNE (meta-SNE).

(a) Final PCA exploration (b) Final Homepage

Figure 64

10.4.1 Neural Network Perspective

The response to this final iteration, that effectively ties together the lessons from the previous

three, was overwhelmingly positive.

The tool enabled researchers to spot patterns emerging within datasets as networks trained

as was the goal. A number of examples of this are explained in the final observations section of

this report.

10.4.2 Visualisation Response

From a visualisation perspective this final tool fulfils all of Edward Tufte’s visualisation principles

to a greater or lesser degree:

• Principle 1, show only as much information as required, is fulfilled comprehensively through

the use of the tSNE algorithm which compresses the multi-dimensional data down into the

2D plane.

• Principle 2, include visual difference only when required, is fulfilled by the PCA-varimax

algorithms such that visual differences are not simply ‘shown when required’, but are

intelligently organised to enable easier comparison.

• Principle 3, use visual encodings for quantitative values, in first transforming the multidi-

mensional data down into two dimensions and then using the scatter plot diagram, which
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even without axis, uses the visual encoding of spatial separation to encode the differences

in quantitative values.

• Principle 4, differences in visual properties should correspond to actual differences in the

data, is explicitly implemented with the tSNE algorithm which optimises a cost func-

tion that aims to preserve the qualities in the data when mapping down to a number of

dimensions that can be easily visualised.

• Principle 5, do not connect values that are discrete, is realised simply by not making any

connections at all, and allowing the researcher to spot these connections of their own

accord, helped along by the d3.js transitions and display plots.

• Principle 6, visually highlight the most important part of your message, occurs at two levels:

firstly when the researcher scrolls over a point in the control plot, the display plot changes

to the corresponding tSNE plot, and secondly as the researcher scrolls over the points in

the display plot, either the categorisation value is displayed as a text string, or the input

image is displayed as a HTML5 canvas rendering.

• Principle 7, augment short term memory through visual patterns, has been achieved by

using transitions from one tSNE plot to another, thus supplementing the researchers short

term memory of the previous plot by providing a trajectory for each point which can be

followed through the transition.

• Principle 8, Encourage the eye to compare different pieces of data, is fulfilled by providing

the control plot which the researcher can scroll over to rapidly change the tSNE plot on

display, thus being able to successfully compare the data, and the PCA-Varimax algorithms

which perform complex comparisons of the data creating the PCA plots.

• Principle 9, Reveal the data at several levels of detail, is enacted by simply enabling the

researcher to zoom in and focus on the local structure within the tSNE plot, or to zoom

out and focus on the global structure.

• Principle 10, Don’t distort the data, has been fulfilled by using the d3.js linear scaling

function that allows us to map data points directly to the visualisation with one constant

scale without undergoing distortion. However it is clear that the data has undergone

significant distortion by each of the algorithms that enable the visualisation to achieve

earlier principles, and so this final principle is fulfilled to a lesser degree.

10.4.3 Implementation Response

The implementation of the final tool clearly separates the concerns of the client side and the

server side. It partitions key elements in classes and folders within a clear file-structure, and

maintains a clean database structure too.

This implementation is deceptively simple and should make it easy for researchers to use the

tool, or adapt it to their needs.
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11 Conclusions

11.1 Final Observations

This section explores some of the observations that were made using the tool, exploring the

tSNE data across both the epoch-layer control configuration as well as the PCA-varimax control

configuration.

Figure 65: Exp.24, Hidden Units.7, Layers.1,3,5, Epoch.30

Layer Change: Emphasising Early Error

Above can be seen that as the neural network gets deeper the clusters within the tSNE plots

get gradually tighter and more distinct. This indicates a transforming representation that has

discovered a space that effectively separates the classes at an early layer, and the subsequent

layers appear to be simply emphasising these early lessons.

This observation could lead the researcher to adjusting their model more substantially in the

earlier layers - perhaps adding more hidden units, applying more effective drop-out to disasso-

ciate the relationships so directly between layers, avoiding what could be an early over fitting

of the data.

Figure 66: Exp.35, Hidden Units.512, Layer.3, Epochs.2-40

Epoch Change: Non-Uniform Distribution

Above can be seen a successful clustering being developed across the epochs with readings

taken across the same layer. The network has performed exactly as desired and separated the

digits particularly well into different clusters.

One observation that could enable the researcher to make potential changes to the model

are two clusters at the top, and two clusters at the bottom. Here the network is not creating a

particularly distinct separation between the digits ‘7’ and ‘9’, and between the digits ‘3’ and ‘5’.

This could lead to the researcher including more examples of these digits in their training-set,
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or in a convolutional network adjusting the filter and maxpooling parameters, as this could

potentially help the network to distinguish between these admittedly similar shapes.

Figure 67: Exp.35, Hidden Units.512, Layer.5, Epochs.2-40

Epoch Change: Retention of Misclassification

In this example as the network trains the researcher begins to see a tightening of the clusters

in a very distinct manor - forming little c’s. The highlighted portion is the retained misclassifi-

cation of a small number of sevens within a cluster of ones .

These classification examples demonstrate why such a network often achieves very good

accuracy, however not entire accuracy - the examples are indeed just very similar. In order for

the researcher to improve such a network many more training examples such as this would be

required - and this tool enables the researcher to discover exactly what these should be.

Figure 68: Exp.46, Hidden Units.16, Layers.1-3, Epochs.6-16

Layer change & Epoch change: Minimal Learning

This situation mirrors the above, where sevens are again misclassified as ones - however here

the two examples are from different layers as well as distinctly separate epochs. This means

that the network is really failing to learn much at all on either account.

Here the researcher would likely increase the number of hidden units in each layer.
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Figure 69: Exp.49, Hidden Units.64, Layers.1, Epochs.14-26

Epoch Change: Local Reshaping, Global Consistency

Here are two very similar sets of data looking at the patterns that emerge on the right hand

side of each image. However, when observed more closely - and this is far easier to spot using

the interactive tool with the transitions - then the reflecting of the section highlighted almost

directly along the x-axis can be seen.

The flipping of this section, and relative retention of the others could suggest that these

units are proving a particular problem for the network. It could also prove that the network is

happy with the global structure that it has identified - as they are primarily well classified, but

not with the local structure, which it is still regularly tweaking.

Figure 70: Exp.49, Hidden Units.64, Layers.5, Epochs.16-28

Epoch Change: Lower Half Characterisation

In this example, the network appears to have learnt to distinctly classify digits 0,1,2,4,7 & 9

however is having difficulties with 3,5,6 & 8. Again this would tie into our intuition about these

letters that could be described as a whole as curvy with distinct tops and bottoms.

Firstly it’s interesting that this section simply gets rotated, and not much is being learnt, but

also the absence of the digits ‘9’ from this triangular set which should also adhere to the above

qualitative description given, suggesting perhaps that the network has learnt to distinguish
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the upper half of the units, but not the lower half - a lesson that could perhaps encourage

researchers to tweak the type of filters used in the convolutional layers to gain a more fine-

grained understanding of the bottom half of the data-samples.

Figure 71: Exp.54, Hidden Units.649, Layers.5, Epochs.18

Zoom-in Understandable Misclassification

This example demonstrates the value of the ability to zoom in upon the data to observe a

local structure within the classifications, but also zoom out to observe the global structure.

The global structure identifies a network that has learnt very well to distinguish the digits,

and has perhaps begun to pick up information about how the artificial dataset was configured

- indicated by the localised ‘c’ shape that regularly appears.

The local, zoomed in, picture of the classification however demonstrates another story - that

while the classifications are incredibly distinct, these distinct ‘c’ shapes contain some obviously

misclassified points, with the digits 6,7 & 9 appearing within a cluster of 0’s. This would suggest

that the researcher should adjust the network to focus more on getting the misclassified results

right or add more 9’s and 7’s to the training set. Perhaps the researcher could look at adding

in a layer which aimed specifically to remove locally misclassified points.

Figure 72: Exp.42, Hidden Units.2, Layers.3-5, Epoch.30

Layer change Low Fidelity Representation

In this example, across the layers the network is not gaining any more of a fine-grained

representation of the data. It is simply producing a rotation.

This is probably expected given the number of neurons that exist here. In larger networks

each unit may learn to encode some distinguishing feature of a dataset - such as gender in facial
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recognition - however this much smaller network must encode all of the learnings within just

two units at each layer, and it seems that this simply enables a rotation or reflection in the

euclidean space. The researcher, rightly, would dismiss this as a bad network and increase the

number of hidden units.

11.2 Future Work

While the project overall produced a tool that can most certainly highlight some important as-

pects of how neural networks train, this forms only one possible tool for probing neural networks

and many other probes exist that could be integrated or created.

This section explores a number of directions that this project could develop in the future.

11.2.1 Automatic Neural Network for Education

Currently, and in response to user feedback, the running of experiments is entirely within the

control of the researcher. They decide the parameters, the architecture etcetera - the implemen-

tation is entirely within their control.

While this works for researchers, a possible alternate use of this project is as a tool to educate

students about neural networks.

In this setting, it would be essential that all interaction was performed through the online

system. A quick sketch below demonstrates that this could be achieved with relative simplicity,

however admittedly a number of important parameters would be out with the control of the

students here.

Figure 73: Sketch Design

11.2.2 Application to other architectures

This project focussed on feed-forward neural networks and convolutional neural networks. How-

ever, the ability to interrogate the activation of networks through the tSNE, meta-SNE, epoch-

layer, PCA-varimax interactions would be useful for all network architectures where the activa-

tions could successful be captured, and the inputs encoded textually or visually.

For example a fairly straightforward adaptation would be to implement the project upon

recurrent neural networks, and map the recurring output and input.
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11.2.3 Inter-Experiment Comparison

While in the final iteration it was possible to compare across layers and epochs, and to some

extent by experiment, it would be good to make this inter-experiment comparison more clear.

Figure 74: Wireframe Design: two models

One possibility, as shown above, is to place two experiments side by side. This means a

direct comparison could be made between two experiments with ease.

Figure 75: Wireframe Design: Epoch-Model

Another possibility would be to provide the opportunity to set the layer or epoch, and to

map the resulting epochs or layers against different experiments rather than against each other.

11.2.4 Google’s Inceptionism

The representations learnt at each layer of a neural network can directly correspond to learning

distinct features within the training set. For example with images, the first layer might learn

to identify edges and other layers overall components of images, until finally it could recognise

whole objects such as a ‘cat’ or ‘dog’.
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The tool built with this project identifies patterns that have been learnt, but doesn’t show

us exactly how the data has been understood. Google, in cutting edge research released after

the commencement of this project, unveiled project Inceptionism by (Mordvintsev et al. 2015).

This projects turns the network upside down and asks it to enhance an input image in such

a way as to recreate the understanding of the image at any particular layer.

Figure 76: Google Inceptionism

The above image demonstrates a the projection of an early layer that captures edge detail

back in the input image space. This can already give insights into how the network may be

learning, and demonstrating how tasks such as drawing boxes around particular features - trees,

antelope, sky, ground - may prove to be difficult as they almost meld into one another.

Figure 77: Images that were understood to be ‘lifting weights’

This image of lifting weights interestingly captures an understanding of lifting weights that

may not be expected at first - that the weights are always correctly identified when they have

a body-builders arm in the image as well. Thus identifying to the researchers that the training

set probably needs to be modified to include more images of lifting weights where no arm is

present.

A lot of the information needed to produce such images is already captured with this project,

and a future development could be to attach the open-soured tool used to create these images to

the back-end developed in this project to create an extra post-processing unit to help researchers

visually understand their neural networks.

11.2.5 Architecture Mapping

As metioned in the literature review of this project, there are a number of different methods

that have already been attempted to capture neural network data. One such representation that

I believe showed promise was the Tzeng project that visualised the network architecture in a

method that captured the relative influence of each unit.
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Figure 78: Tzeng Map

Another future development of this project could be to take the activations stored in the

server and create a d3.js implementation that replicates the work started by Tzeng.

11.2.6 Alternate User Interfaces

While human beings are great an understanding two dimensional representation such as the

scatter plots exhibited in this project, humanity inhabits a three dimensional world and these

two dimensional representations are mostly compressions of three dimensional data.

In order to fully appreciate the spatial representations of the tSNE plots, a further enhance-

ment could be to map the multi-dimensional space to three dimensions instead of two. This

could be implemented using THREE’s trackball controls, or could be implemented in such a way

that it could be interacted with in virtual reality using means such as the Occulus Rift.

Below is a conceptual sketch of how this might appear analysing the MNIST dataset.

Figure 79: 3D Virtual Reality Exploration

11.2.7 Beyond Theano

A final future adaptation that could be implemented, and would really be taking this project

far further in terms of its mass usability - would be to extend the project beyond the realms of

Python and Theano.
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11.3 Summary

Deep Neural Networks are quickly becoming the industry standard for many complex machine

learning tasks such as computer vision and speech recognition.

However unlike some other machine learning models that are widely understood, such as lo-

gistic regression techniques, few fully understand Deep Neural Networks in their full complexity.

This poses real practical problems for researchers and practitioners alike.

This thesis aimed, through the provision of a visualisation tool, to help researchers probe

their neural networks while they train in order to better understand what they do, and how

they represent their data.

This is a big, very current, area of research and while many methods being developed within

the field are often mathematical - this thesis takes an alternative approach, one that has been

proven to be successful across many other industries, using visualisation as a tool for under-

standing.

Having explored neural networks and visualisation theory, and having spoken to researchers

about their everyday challenges, a tool began to develop centring around the tSNE dimension-

ality reduction algorithm.

tSNE retains important topological characteristics within datasets at both a global and local

level. This makes it perfect for reducing the high dimensional data captured during a networks

training to the two or three spatial dimensions understood intuitively by humans.

This report explained the development of a tool for probing the inner machinery of neural

networks, looking at topics of visualisation, animation, interaction, data production, data col-

lection, data manipulation and web development. All of which were necessary in the production

of the final product.

Using an iterative development process the tool continually converged upon a set of spec-

ifications that made it easy to use, clear in its architecture, simple in its user interface and

highly functional in enabling researchers to identify emerging patterns within their data that

are ultimately indicative of model characteristics that can modified through guided selection of

network design parameters.

The main contribution of this project is a tool for researchers than can be used to better

understand their neural networks. However in addition, by demonstrating the usefulness of

visualisation as a tool for analysis and not presentation, the thesis makes a wider contribution

to the community as a whole in helping to strengthen the argument for more sophisticated

visualisation techniques to be used in typically non-visual subject areas.
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A Classifying Academic Visualisations

Figure 80: Sample of Classifying Image Data
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Figure 81: Sample of Classifying Image Data
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Figure 82: Sample of Analysis of Image Data81
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B Visualisation Software Study

Figure 83: Overview of visualisation software by Rui Wang
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